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1. INTRODUCTION

Shallow-sag cables present a variety of unusual dynamic properties, caused by the
coupling between transverse and axial vibrations provided by static curvature.
Irvine's parameter j [1] is central to the linear analysis:
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where E represents Young's modulus, A the cross-sectional area of the cable, ¹1 the
static tension in the cable (assumed constant along the length), w the cable's linear
weight, and ¸ its length. j2 is proportional to the ratio of elastic to catenary sti!ness
in the line, and through its mid-range, symmetric modes change shape and experience
frequency crossover with respect to the non-changing antisymmetric modes.

The dynamics of arched and sagging beams with axial loading show a similarly
rich behavior, again as a result of the curvature e!ects and extensibility [2}4]. In
reference [5], Lu developed an asymptotic method to study the e!ects of bending
sti!ness on the canonical cable solution, reporting that the addition of bending
sti!ness moves the crossover points to higher values of j and to higher frequencies.
An important second parameter emerges that, with j2, governs the tensioned beam
problem:
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where I is the sectional moment of inertia of the uniform beam. In this letter, we
describe an alternative formulation to Lu's method [5], that results in explicit
scalar equations, whose roots are the natural frequencies of the structure. We
illustrate these modes and the associated dynamic tensions over a large range of
bending sti!ness.

2. DIFFERENTIAL EQUATIONS

We model the member as an elastic #exible rod under tension, and omit the
e!ects of shear deformation and rotary inertia. The static con"guration is assumed
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Figure 1. De#ection of the member from its static con"guration given by the co-ordinates p(s, t)
(axial) and q (s, t) (lateral).
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to be contained within a vertical plane, and we consider here the in-plane dynamics
only, as shown in Figure 1. Small lateral de#ections q6 from the horizontal during
static hanging are governed by the simpli"ed beam equation
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#w"0, (3)

wherein if EI is small, the hanging cable with constant curvature w/¹M is recovered.
As EI increases, the structure evolves from a horizontal catenary cable to a straight
beam [6], and in the cases of one or both ends simply supported, the curvature
becomes non-uniform along the length. In the case of clamped}clamped end
constraints, with terminal angles matching the hanging cable (with no bending
sti!ness), variations in EI do not a!ect the shape at all. To keep the static
con"gurations consistent for all values of bending sti!ness, we deal only with this
latter case.

Letting p and q denote the axial and lateral de#ections respectively, and
assuming a sinusoidal dependence on time such that q"qJ cosut, the equations of
oscillating motion for a shallow-sag cable without bending sti!ness are [7]

!mu2pJ "EA (pJ A!aqJ @ ), !mu2qJ "¹M qJ A#aEA(pJ @!aqJ ), (4, 5)

where spatial derivatives are denoted by @, m is the linear mass of the cable, and
a"w/¹M is the static curvature. This form includes a dynamic tension component
¹I and a linear stress}strain relationship, such that ¹I "EA(pJ @!aqJ ). We also have
eliminated several terms from the listing in reference [7], using the assumptions
EA/¹1 A1 and qJ ApJ . Setting qJ "cos(ks), evaluation of the corresponding
characteristic equation gives wavenumbers k and k satisfying
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where we have assumed further that mu2/EA'a2, which is realistic in practical
applications. We write the following mode shapes:
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and these can be employed with the boundary conditions pJ ($l )"qI ($l )"0,
where l"¸/2, to obtain the natural frequencies and mode shapes found by Irvine
and Caughey [1]:

Antisymmetric: sin kl"0, (10)
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The wavenumber k relates primarily to taut-string transverse de#ections, while k is
a result of strong coupling between the axial and transverse motions.

The addition of bending sti!ness to the above brings a new term !EIqJ AA to the
right-hand side of equation (5). The solutions thus derive from a sixth-order
characteristic equation, and it can be shown with the assumptions so far that the
approximate roots are: k2"$(mw2/EA!a2), and two other sets from the
simpli"ed case of zero curvature and inextensibility:

EIqJ AA!¹1 qJ A!mu2qJ "0. (16)

One wavenumber pair corresponds to the sinusoidal mode qJ "cos(ks), and the
other to the exponential qJ "e$vs. The "rst we denote by k again, replacing the
value of the previous section; the wave numbers and resulting mode shapes are
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A frequency non-dimensionalization can be made from these results so far. De"ne

u8 2"mu2¸2/¹1 (21)

to yield a parametrized version of (real) kl:
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For the nth taut-string mode, kl"nn/2, and equating this with the above gives an
nth normalized frequency as u8

n
"JDn4n4#n2n2 . As DP0, u8

n
Pnn, recovering

the taut-string case without sti!ness. As DPR, u8
n
Pn2n2JD , which is the

correct value for simply supported pure bending. The normalization frequency u
0

used in the plots of the next section is the dimensional form of u8
1
:
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3. SOLUTION FOR CLAMPED}CLAMPED BOUNDARIES

The clamped}clamped boundary conditions are expressed in terms of the
vibration amplitudes as follows: qJ ($l)"0, qJ @($l )"0, and pJ ($l )"0. These
constraints with equations (19) and (20) lead to a 6]6 matrix B satisfying Bc"0,
where c"Mc
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6
N. B can be reduced to a block-diagonal form

B3 through a sequence of linear transformations, which preserve the determinant
(see also reference [2]), and the condition det(B3 )"0 allows two separate equations,
where the simpli"cation sin klKkl follows from the assumptions:
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The "rst of these has dependence on k, while the second does not. Therefore, as in
cables without bending sti!ness, two fundamentally di!erent types of modes exist:
one involving primarily transverse motions of a taut string or beam, and another
with strongly coupled axial and transverse motions.

Mode shapes for the structure are obtained by solving for c. Setting cJ
3
"1 and

c8
6
"1, the 3]3 blocks in B3 give
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Employing the transformation back to c gives, for the "rst mode type
(k-dependent), the mode shapes
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For the second equation (k-independent) we have

pJ "
a
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Mk sin kl [cosh ll!cosh ls]#l sinh ll [cos kl!cos ks]N, (30)

qJ "sin ks sinh ll!sin kl sinh ls. (31)

The frequency results are plotted in Figure 2, for the physical parameters
¸"100m, ¹1 "20 kN, w"10N/m, and EA"200]105 N; the remaining
properties follow from equations (1) and (2). For low values of D, corresponding to
very small bending sti!ness, the results for cables are obtained, i.e., the kth
symmetric and kth antisymmetric modes have coalescent natural frequencies (mode
crossover) at values j/n"2k. The antisymmetric modes, independent of j, show
uniformly smooth transition from the cable values to the beam values. Symmetric
modes, at small values of j, also show smooth variation from cable to beam modes
as D increases. For larger values of j and in the mid-range of D, however, the
symmetric-mode frequencies are substantially elevated, compared to a pure beam
or cable with the same geometry. This e!ect diminishes progressively for
higher-order modes, and the natural frequency of the kth symmetric mode is
bounded above by the minimum value of the (k#1)th symmetric mode at low j.
Figure 2. Normalized frequencies as functions of D and j/n. Antisymmetric modes follow the
dashed lines for all values of j/n.
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The elevated natural frequency of the symmetric modes for moderate D causes
the crossover to occur at di!erent values of j, when compared to a pure cable, as Lu
[5] found. For example, at log(D)"!0)7, the crossover associated with the second
antisymmetric mode occurs at j/n"32 instead of at 4. However, the behavior of
the natural modes in the vicinity of a crossover point is qualitatively similar to that
of a pure cable: along a curve of constant j, moving from low towards high D the
symmetric mode loses two lobes as it crosses an antisymmetric mode. Examples of
mode shape transitions as functions of D are shown in Figure 3, for j"32n.

The peak dynamic tensions corresponding to the "rst two symmetric modes are
plotted in Figures 4 and 5. The values shown are non-dimensionalized with the
maximum de#ection of qJ , and have the same overall scaling as used by Irvine and
Gri$n [8]. For the "rst mode, at values of j/n above crossover, tensions grow
signi"cantly with bending sti!ness, and are upper-bounded by the linear ¹I !j/n
relationship of the pure beam. The second mode of the pure beam also shows
a linear trend, but with a reduced magnitude compared to the "rst mode. Further,
at a given j/n and as bending sti!ness decreases, tensions increase to the level of the
pure beam's "rst mode, and then decrease sharply. Thus, the "rst mode always has
maximum tensions generated in the pure beam, but the second mode can reach
maximum tension value at any intermediate bending sti!ness, depending on j/n. In
all cases, the tension maxima are aligned with crossovers.
Figure 3. Symmetric modes, j/n"32. Dashed lines show 10]pJ (s), solid lines show qJ (s).



Figure 4. First symmetric mode dynamic tension.

Figure 5. Second symmetric mode dynamic tension.
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The signi"cance of these "ndings pertains mainly to the ampli"cation of modal
frequencies, and to the variation of mode crossovers, which are accompanied by
high dynamic tension. For the "rst two modes discussed, these properties are most
sensitive in the range of D from 0)01 to 1.
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